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LIQUID CRYSTALS, 1994, VOL. 17, No. 5, 667-679 

Stochastic model for the reorientation of molecules 
around their long axes in a smectic C phase 

by P. SCHILLER 
Martin-Luther-Universitat Halle-Wittenberg, 

Institut fur Physikalische Chemie, Muhlpforte 1, 06108 Halle/S., Germany 

(Received 5 January 1994; accepted 28 February 1994) 

In smectic phases molecules can reorientate around their long and short axes. 
The motion of a molecule around its long axis is non-cooperative and influenced 
by both stochastic and deterministic forces exerted by neighbouring molecules. 
Solving the Smoluchovsky equation for such a reorientation process, two-time 
correlation functions are calculated which are related to frequency-dependent 
susceptibilities. The results are used for investigating how deterministic forces in 
higher ordered smectic phases have an effect on microwave spectra. It can be 
concluded that the quadrupolar ordering produces a splitting of the relaxation 
frequency. This splitting, which should occur at the transition from the smectic A 
to the smectic C phase, is only weakly influenced by an additional dipolar 
(ferroelectric) ordering. 

1. Introduction 
The reorientation of molecules in smectic phases is less restricted than in crystals. 

If the elongated molecules have a dipole, this process is detectable by using dielectric 
spectroscopy. In smectic A liquid crystals, the preferred direction (polar angle) of the 
molecular long axes strongly fluctuates near to the smectic A-smectic C phase transition 
temperature causing a soft-mode behaviour. Below the transition temperature, a 
Goldstone-mode additionally appears in the smectic C phase. This mode is caused by 
azimuthal angle fluctuations of the long molecules, which are tilted with respect to the 
normal to the smectic layers. Both the soft-mode and the Goldstone-mode are relatively 
slow cooperative motions observable by conventional dielectric spectroscopy [ 1-41. 
Most known experimental and theoretical investigations refer to phases with a 
non-racemic mixture of chiral molecules forming a ferroelectric ordering in the smectic 
C phase. 

The expected dielectric behaviour for low frequencies is qualitatively described 
correctly by the Landau theory, which is valid close to the smectic A-(ferroelectric) 
smectic C phase transition temperature [5 ] .  Besides the soft-mode and the Goldstone- 
mode, the theory predicts a fast relaxation mechanism visible in the microwave regime. 
It results from the reorientation of molecules with a transverse dipole moment around 
their long axes. According to the Landau theory this mode should split into two branches 
below the smectic C-smectic A phase transition temperature. 

The occurrence of such a splitting, however, is not yet experimentally clarified. 
Kremer et al., published a series of papers [6-81 which demonstrate that the fast 
reorientation mode does not split or broaden at the phase transition point, in contrast 
to the prediction of the Landau theory. Taking into account these experimental findings, 
Brand and Pleiner [91 proposed a slightly different formulation of the Landau theory 
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668 P. Schiller 

from that originally introduced by Blinc and Zeks [I]. On the other hand, Gestblom 
et al. [ 101, suggested there could be a splitting in the high frequency relaxation spectrum, 
but there is also a distribution of the relaxation times caused by libratory and 
intramolecular motions. Then it would be hardly possible to obtain experimentally 
resolved relaxation peaks, as the frequency differences are small. 

In the present paper the reorientation of particles around their molecular long axes 
is investigated from another point of view, using as a starting point, the microscopic 
model proposed by Urbanc and Zeks [ 1 I]. Supposing a molecular-field-approximation, 
the microscopic model defines an averaged potential energy for a single particle 
surrounded by tilted neighbouring molecules in the ferroelectric smectic C phase, 
namely 

(1) 

where x is the angle between a short particle axis and the direction perpendicular to the 
tilt plane of the molecules (0 < x < 27~). The coefficients hl cc 0 and hZ cc 8’ depend on 
the tilt angle 0. Then the single particle distribution is 

f(x) = hi cos x + h2 cos 2x, 

( 2 )  
hi cos x + h2 cos 2~ 

kT 
~ , ( x >  = Cexp ( - 

(C,  normalization constant; T,  temperature; k, Boltzmann constant). Fluctuations of the 
long molecules around their short axes will be neglected. 

Probably, the transverse molecular ordering does not originate from interactions 
between electric dipoles even in the ferroelectric C phase, but is a local property of a 
molecule which feels a rotation hindrance due to the tilted near neighbours. Hence the 
assumption is reasonable that the main contribution in the anisotropic interaction is 
caused by the shape of the molecules, whose cross-section deviates from a circle. The 
order parameters (cosx) for dipolar ordering and (cos 2x) for quadrupolar ordering are 
obtained by averaging 

(cos mx) = dx cos mx P,(x) (rn = 1,2). (3) I* 
In the case of a weak periodic potential with Ihll, 1,421 4 kT, the results 

(4) 
hi h2 (cosx) = - __ and (cos 2x) = - __ 

2kT 2kT 

are obtained. Actually, it has been found by measuring the spontaneous polarization, 
which is proportional to (cosx), and by recent 13C and 14N NMR and NQR experiments 
[5,12, 131, that the conditions /(cosx)/ Q ~(COS 2 x ) l 4  1 are usually satisfied. Hence the 
coefficients of potential (1) obey 

lhll Q Ih214 kT. ( 5 )  

The value of (h2( is seldom larger than 0.3kT. 

2. Brownian motion around the molecular long axis 
A frequently applied model which also seems to be applicable to reorientational 

motions of liquid crystal molecules is based on the assumption of small step rotations 
[ 14-1 91. Before a full rotation around the long axis is accomplished, a particle is pushed 
to and fro many times by its near neighbours. The resulting stochastic process is a 
brownian motion described by a Langevin equation. In a smectic A phase, there does 

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
1
0
:
3
4
 
2
6
 
J
a
n
u
a
r
y
 
2
0
1
1



Stochastic model for reorientation in Sc 669 

not exist a preferred direction within the smectic planes and the potential energy is 
equal to zero (hl = hz = 0). Then the Langevin equation of an overdamped rotator, 
which describes the time dependence of the particle rotation angle x, has the simple 
form 

where y is the viscosity coefficient and the stochastic torque obeying (r(t)) = 0 is 
characterized by the two-time correlation function 

(7) (r(t)r(t’)) = 2 y k ~ 4 t  - t’). 

y = A exp (EIkT), 

The coefficient y is expected to satisfy an Arrhenius law 

(8) 

with constants E and A .  Considering higher ordered smectic phases, we assume that the 
stochastic motion is influenced by a deterministic periodic potential f (x) for modelling 
the anisotropic environment of a particle. Furthermore, a time-dependent potential 
fi(x, t) is introduced on account of the interaction of a transverse dipole with an external 
electric field. Then the Langevin equation 

is obtained. With regard to conditions (3, potential (2) can be simplified to 

A x )  = h cos ( P I ,  (10) 

with p = 2. But it will be instructive to suppose that p is an arbitrary integral number. 
It should also be noted that linear corrections (proportional to h2lkT and hllkT) of the 
susceptibilities and relaxation times, which are separately obtained for the potentials 
hl cosx and hZ cos 2x by a perturbation calculation, can be simply added, so that the 
result is valid for the combined potential (1). 

The interaction energy of a transverse electric dipole p with an electric field directed 
perpendicular to the long particle axis is 

(1 1) fi(x, t) = p * E 
or written explicitly 

f i (x ,  t) = p(E,(t) cosx + E,(t) sinx), (12) 

where the axes u and v of a Cartesian coordinate system are fixed in space (see 
figure 1). The angle x is enclosed by the axis u and the dipole vector p, which is parallel 
to the short axis a. In 5 5, the model will be modified by assuming that the dipole and 
the axis a can enclose a non-zero angle a. 

Equation (12) motivates the introduction of two-time correlation functions for 
studying the linear response with respect to an applied electric field: 

K,(t - t’) = (cosx(t) cosx(t’)) and K,(t - t’) = (sinx(t) sinx(t’)). (13) 

The brackets ( ) define the averaging over a stationary ensemble, which means that the 
time-dependent electric field is switched off (f i (x, t) = 0 in equation (9)). Obviously, 
if the system is isotropic in the u-v-plane, both functions (13) coincide. 
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670 P. Schiller 

c 
U 

Figure 1. In a smectic C phase long particles are tilted with respect to the normal to the smectic 
plane. A Cartesian system u, v and w is assumed to coincide with the principal axes of the 
dielectric tensor. The angle x is enclosed by the short particle axis a and the axis u. 

With the choice t’ = 0 and the definition x(0) = y, the correlation functions (13) are 
expressed by [19] 

where the joint probability density (t > 0 in all further definitions) 

P(x,  t; y ,  0)  = P(x,  tly, 0)PdY)  (15) 

is a product of the single particle distribution in equilibrium 

and the conditional probability density P(x, tly, 0) obeying the initial condition 

P(x, tlY, 0)  = 6(x - Y), (17) 

for t = 0. As is well known [19], the Langevin equation (9) is equivalent to a 
Smoluchovsky equation for the probability density P(x, t) of particle orientation. 
Assuming fl(x, t) = 0, we obtain 

with 
D = y-IkT. 

Equation (1 8) can be written in the symbolic manner 

where L is a linear differential operator. The transition probability P(x, tly. 0) can be 
obtained by solving equation (18) with the initial condition (17). 
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Stochastic model for reorientation in SC 67 1 

2.1. Correlation functions for  h = 0 (smectic A phase) 
In the special case h = 0, equation (1 8) reduces to 

aP(x, t )  a*P(x, t )  
at a 2  

~- - D- 

and the transition probability P(x, tly, 0) is equal to Green’s function of the diffusion 
equation (21), namely [20] 

1 l r n  
271 71,,1 

~ ( x ,  tly, 0) = - + - C cos n(x - y )  exp ( - n2Dt), (for t > 01. (22) 

With P,(y) = (2n)- ’, (15) and (14), the correlation functions (14) are given by 

Kc(t) = +exp ( - Dt) and K,(t) = 4 exp ( - Dt), (for t > 0). (23) 

2.2. Representation of the joint probability density for  h # 0 (ordered smectic phase) 
It is instructive to investigate how the correlation functions (23) are changed if a 

deterministic torque is acting (h # 0). Since h kT, a perturbation approach is useful 
to obtain analytical results. Inserting the ansatz P(x, t )  = p,(x) exp ( - Ant) into equation 
(20) leads to the eigenvalue problem 

J-pn(x) = - A g n ( x ) .  (24) 
A transformation of the operator L into a hermitian operator [19] 

-fW H = e x p  ~ Lexp - ( 2kT ) 
simplifies further calculations. As proved easily, the transformed differential equation 

H$n(x) = - An$&) (26) 
has the same eigenvalues An as equation (24). The joint probability density has the 
representation [ 191 

with the normalization condition 

[rdric/ ,*(x)+m(x) = dmn. 

For example, if f(x) = 0 equation (26) yields An = Dn2 and 

where n is an integer and I = d - 1. Combining (29) with formulae (15) and (27), the 
Green’s function (22) is rederived. 

3. Application of Schrodinger’s perturbation theory 
For f (x) # 0, the operator (25) is determined by 
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672 P. Schiller 

where the primes indicate the first and second derivative with respect to x, respectively. 
Taking into account that E = h/kT is a small parameter, H is a sum of three operators 
defined by 

Hog D$", 

Dp2 h 
Hit+!/= -----cos~x$ 

2 kT 

and 

The unperturbed equation 

H01,b = - A0 * 
leads to A," = Dn2 and the eigenfunctions (29). These functions, however, are not 
suitable for the present calculation, because the twofold degeneracy of the eigenvalues 
($&) and $ - .(x) have the same eigenvalue) requires a careful choice of the basis 
functions. The real basis with 

1 1 1 
$:(x) = ~ cos nx and q$(x) = ~ sin nx, (n  = 1,2,3, . . .) (33) v n  v7.C $ax) = ~ V( 2n) ' 

meets the requirement that divergent terms are avoided. Using Dirac's notation 
2n 

(kw I cp(x))q = j- du$(x)cp(x) 
0 

the basis functions (33) satisfy the conditions 

and (34) 

As is also usual in quantum mechanics, the perturbation calculation is performed up 
to second order terms of magnitude for the eigenvalues and up to first order terms for 
the eigenfunctions. Taking into account (34), we obtain the formula 

and 

for the eigenfunctions and 

and 

(35) 

(36) 

(37) 
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Stochastic model for reorientation in SC 673 

for the corresponding eigenvalues. Formula (27) for the joint probability function is 
replaced by 

Elaborating the matrix elements in the expressions (35), (36) and (37) and inserting the 
results in (38) yields 

with 

m 

1 Pn $.p/2(x, t; y, 0)  = (cospx + cospy) 

h 
cos n(x - y> exp ( - Ant) 

(nfpl21 

cos [n(x - y )  - px] - cos [n(x - y) + pxl 
2n + p  

{ n # p / 2 )  

} exp ( - Ant>- 
cos [n(x - Y) - PYI + cos - Y> + PYI - 

2n + p  2n -p  

The second term on the right hand side of (39) is determined by 

h 
PP/2(X,  t;y, 0) = ~ 1 - -(cospx + cospy) 

2n2 {[( 2kT 
h 

h + [(I - G ( c o s p x  + cospy) 

+ sin P -y  sin -x)] 3P exp ( - t,,t)} 2 2 

if  p is an even number; for odd p the term Pp& t; y, 0) is defined to be zero. The decay 
rates An and t,, are 

=Dn2[ 1 + 
and En = 1, for n # pl2, I 

(for even p), and I 

(for even p). 

ep/2=F[l-h+i(lr)i] kT 8 kT J 
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674 P. Schiller 

The joint probability density (39) allows the calculation of correlation functions for the 
stochastic reorientation if h B kT. 

4. Correlation functions 

4.1. Dipolar ordering 
We restrict our attention to the cases p = 1 and p = 2 corresponding to dipolar 

and quadrupolar ordering, respectively. Using (14), (39) and (40) the simple 
result 

with I 

and E = h/kTis derived. According to (41), the dipole ordering only weakly influences 
the decay constant A, and the property Kc(t) = Ks(t) is the same as for an isotropic system. 
This result is a little surprising, because a preferred direction of orientation exists which 
is accompanied by a non-zero order parameter (cosx). 

For comparison, an exactly solvable model [ 181 with the piecewise constant 
potential energy 

+ h  for - n / 2 + 2 n n < x <  +n /2+2nn  
- h for + n/2 + 2nn < x < + 3n/2 + 2nn 

(n ,  integer number) is considered, which also produces a dipolar ordering with non-zero 
(cosx). In this case the correlation functions become 

1 m 

+ - [tanh (h/kT)]* 
exp(-Dt) 4 

Kc(t)  = 2[cosh (h/kT)]* n2 

and 

Ks(t) = -$exp( - Dt). (44) 

The time independent contribution in (43) is due to the dipolar ordering accompanied 
by the order parameter 

2 
(cosx) = - - tanh (h/kT) 

7c 

which is proportional to a spontaneous polarization directed parallel to the 
axis u (see figure 1). Now K,(t) is expanded in a series up to second order with 
respect to E 

K,(t) = - - + - 1 - - exp( - Dt) + - * {fast decaying terms} (45) 
n2 4 ( h r  kT :[ (:Trl ( t T S  

and a comparison of (44) with (45) reveals that the anisotropy in the u-v-plane causes 
different correlation functions. In the present case with E < 1 ,  however, the difference 
between Kc(t) and K,(t) is negligibly small. 
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Stochastic model for  reorientation in SC 675 

4.2. Quadrupolar ordering 
Applications of equations (14), (39)  and (40) for p = 2 leads to two different 

correlation functions, namely 

with 

and 

s t  -- 1+- exp(-{t)+O(E2) 2:T) 
with I 

h 3 h  
kT 8 kT 5 = [ - - + - ( - ) 2 ]  + O(E3) .  

The quadrupolar ordering produces a more pronounced difference between Kc(t) and 
Ks(t) than the dipolar ordering, so that different susceptibilities and relaxation times are 
expected dependent on the electric field direction. 

5. Susceptibilities in the case of quadrupolar ordering 
The correlation functions Kc(t) and K,(t) for the particle reorientation should allow 

the calculation of dielectric susceptibilities, provided that the electric field lies in the 
u-v-plane and there exists a non-zero transverse dipole moment. As shown previously, 
the dipolar term in potential (1) does not remarkably influence the two-time correlation 
functions even if the coefficient hl has the same magnitude as h ~ .  Thus, the simplified 
model with potential energy f (x) = h cos 2x (h = h2) only needs to be considered 
neglecting the contribution hl cos x. 

Let us regard the simple case of particles which have only one transverse dipole 
firmly attached to the molecular long axis. The macroscopic dipole moment is equal 
to the sum 

N 

~ ( t )  = 2 pi(t> 
i =  1 

over N particle dipole moments pi@) = (piu(t), piv(t)). Macroscopic autocorrelation 
functions defined by [21] 

1 
= V(Ma(t)Ma(O)) (a = u, v) (47) 

(V, volume of the sample) are connected with the dielectric permittivities measured 
parallel to the axes u and v, respectively. The frequently used assumption for 
non-associated liquids (pja(t)pja(t’)) = 0 for i Z j  should also be valid in the present case 
and (47) is transformed to 

N 
$u@) = +Z(f)Pa(O)). 

The electric dipole is not always aligned parallel to the axis a of a sterically quadrupolar 
particle, but can enclose an angle a (see figure 2)  as proposed in refs [ 1 1,221. In a smectic 
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676 P. Schiller 

U U 
Figure 2. One half of the particles is directed with their heads upwards and the other half 

downwards. The dipoles of the former particles enclose the angle x + tl with the dielectric 
principal axis u, and the latter particles enclose the angle x - a. 

C phase, this angle is + a for one half of the particles oriented with their heads upwards 
and - a for the other half of the particles, which are oriented downwards. Only in this 
case is the twofold rotation axis, which is both a symmetry element of the non-chiral 
and the chiral smectic C phase, preserved. Figure 2 shows that the angle a changes 
its sign when the head and tail of a long molecule are exchanged (by a rotation 
of 180" around the short axis a).  An electric field directed parallel to the u axis and 
a dipole enclose either the angle x + a or x - a. Then by averaging over all dipoles 
we obtain 

&(t) = +pp2(cos (x(t) + a) cos (x(0) + a )  + cos (x( t )  - a) cos (x(0) - a)) 

where p = N/Vis the particle density. For a field parallel to the v axis the corresponding 
correlation function is 

dY(r) = +pp2(sin (x( t )  + a) sin (x(o) + a) + sin (x( t )  - a) sin (~(0) - a)), 

4u(t) and 4,(t) can be expressed by the previously defined correlation functions (14) 

and 

The principal values of the dielectric susceptibility tensor 

obtained by a half-sided Fourier transformation 

refer to the dielectric response with respect to the local electric field E acting at the 
position of a dipole. Inserting (48) in (50) leads to the final results 

and ) (51) 
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Stochastic model for reorientation in Sc 677 

with relaxation times 

71 = (52) 
1 1 

and z2= 

which follow from relations (46), neglecting a term proportional to ( h / l ~ T ) ~ .  Directly 
measurable dielectric permittivities 

D[1 + (h/kT)] D[1 - (hlkT)]’ 

&,(a) = &:(a) + I&h’(W) (a  = u, v), (53) 

are obtained from 

&,(a) - fli = R a ( U ) x a ( a ) ,  (54) 

where n, is the infrared refractive index and R,(o) is the internal field factor connecting 
the local field and the applied electric field. There is no generally accepted procedure 
for calculating R,(w). Several approaches known from the literature are considered 
in [23]. 

6. Discussion 
The model with the potential f (x) = h cos 2.x refers to a quadrupolar ordering 

occurring in non-chiral and chiral smectic C phases. In the case of a chiral phase, the 
additional contribution hl cosx produces a ferroelectric ordering. 

According to equations (41) and (49, the potential hl cosx produces corrections 
proportional to ( h ~ l k T ) ~  for the susceptibilities and the relaxation time, which are very 
small since lhl/kTl 6 1. Therefore this potential has no remarkable influence on the 
dielectric spectrum, even if the coefficient hl is as large as h = h2. This conclusion is 
supported by the molecular dynamics method applied to an array of rotators [24]. It was 
demonstrated that dipolar forces play little part in the dielectric relaxation spectrum. 
Angular potentials other than those resulting from dipole-dipole interaction were 
proved to be more effective. Thus the contribution hl cosx in potential (1) is negligible 
when dielectric susceptibilities are calculated. 

Consequently, we only consider the potential f ( x )  = h cos 2x which produces more 
pronounced corrections proportional to hlkT in the formulae for z and x. Equations (51) 
and (52) are sufficient to demonstrate how the dipoles respond to an alternating local 
electric field. An additional consideration of the internal field factorR,(o) in (54) should 
not influence the general conclusions. 

The potential barrier h = h2 of the quadrupolar term is zero in a smectic A phase 
and grows linearly with decreasing temperature Tin the smectic C phase. Close to the 
phase transition temperature TAc the simple formula h = c02 - TAc - T is obeyed (c  is 
a constant). In this case formulae (52) describe a splitting of the high frequency 
dielectric relaxation spectrum at the transition S*-Sc as also predicted by the Landau 
theory of the version of Blinc and Zeks [ l ,  51. But there could be a difference in the 
interpretation of the splitting mechanism. In the framework of a Landau theory, the 
existence of a dipolar ordering and a spontaneous polarization seems to be essential for 
describing the high frequency spectrum. The model for a rotator in a single particle 
potential f (x) = h cos 2x, however, only includes quadrupolar ordering of particles. In 
this case, the chiral smectic C phase with ferroelectric ordering and the non-chiral 
smectic C phase should not differ much in their high frequency dielectric spectra. 
Unfortunately, the splitting of frequencies in the smectic C phase is only a weak effect. 
Using formulae (52) and assuming h = 0*3kT, we get the ratio ~ d z 1  = 2 for the relaxation 
times in the smectic C phase. 

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
1
0
:
3
4
 
2
6
 
J
a
n
u
a
r
y
 
2
0
1
1



678 P. Schiller 

x,l I 

x, 
\ I 

\ 
I 

7- 

T- TAC 
Figure 3. The temperature dependence of the relaxation time z and the dielectric susceptibilities 

x: and x: concluded from equations @ I ) ,  (52) and (8). The splitting of z below the 
smectic C-smectic A phase transition temperature is similar to that predicted by the 
Landau theory for a chiral smectic C phase. 

A comparison of theoretical and experimental results is difficult, since relaxation 
times must differ by at least one order of magnitude to resolve them uniquely [lo]. 
Cole-Cole diagrams revealed that even in the smectic A phase, the spectrum is 
broadened, so that more than one relaxation frequency would be necessary to fit 
experimental data. A possible explanation for this behaviour is based on the occurrence 
of more than one electric dipole in molecules which form a ferroelectric smectic C 
phase. If two or more electric dipoles occur, intramolecular reorientations must be taken 
into account additionally. For example, motion around single bonds can lead to different 
relaxation times for two dipoles attached at the centre and a tail of a long molecule. 

It seems that all known chiral molecules which form a ferroelectric smectic C phase 
have more than one electric dipole [25].  Perhaps a smectic A phase consisting of 
non-chiral molecules with only one electric dipole near the particle centre has a simple 
Debye spectrum in the high frequency regime. In this simple case, the splitting of the 
relaxation frequency in the smectic C phase could be detectable. Figure 3 shows the 
expected dielectric behaviour. 

The author is indebted to Professor A. Saupe for useful discussions. 
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